Properties of Shapes

Knowledge Organiser

Key Vocabulary

angle

right angle

acute

obtuse

reflex

protractor

horizontal

vertical

parallel

perpendicular

polygon

regular

irregular

two-dimensional

three-dimensional

flat face

curved surface

edge

curved edge

vertex

vertices

apex

radius

diameter

circumference

Angle Types

Acute Angles

angle that measures less than 90° is called an acute angle.

Obtuse Angles

Any angle that measures greater than 90° and less than 180° is called an **obtuse** angle.

Reflex Angles

angle that Anu measures greater than 180° is called a **reflex** angle.

Calculating Angles

Angles on a straight line always total 180°.

Angles around a point always total 360°.

Angles in a Quadrilateral

 $a + b + c = 180^{\circ}$

Angles in a Triangle

Opposite angles that share a vertex are equal.

Multiples of 90° can be used as descriptions of a turn.

 $a + b + c + d = 360^{\circ}$

Properties of Shapes

Knowledge Organiser

Using a Protractor

Place the cross or circle at the point of the angle you are measuring.

Read from the zero on the outer scale of your protractor.

Count the degree lines carefully.

Parts of Circles

A circle is a 2D shape. The perimeter of a circle is called the circumference (c). The distance across the circle, passing through the centre, is called the **diameter** (d).

The distance from the centre of the circle to the circumference is called the **radius** (r).

$$r \times 2 = d$$

$$\frac{d}{2} = r$$

Nets of 3D Shapes

joined to make a 3D shape. When you are drawing a net, or solving a problem carefully about where the edges of the faces meet.

A shape net shows which 2D shapes can be folded and involving a shape net, think

Angles in Regular Polygons

As the number of sides of a polygon increases by one, the total of the interior angles increases by 180° . When n = number of sides, this formula can be used to find the size of each angle in a regular polygon:

Sum of Interior Angles =
$$(n - 2) \times 180^{\circ}$$

Each Angle =
$$(n-2) \times 180^{\circ}$$

Pentagon

$$(5 - 2) \times 180^{\circ} = 540^{\circ}$$

 $540^{\circ} \div 5 = 108^{\circ}$

Hexagon

Properties of 3D Shapes

3D shapes have three dimensions – length, width and depth.

A **polyhedron** is a 3D shape with flat faces. Spheres, cylinders and cones are not polyhedrons as they have curved surfaces.

