Year 3

Addition \& Subtraction

- Mentally add and subtract: a HTO + / - a multiple of 1,10 and 100
- Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction.
- Estimate the answer to a calculation and use inverse operations to check answers.
- Solve the missing number problems using relationship between +-
- Calculations with two-digit numbers (exceed 100).
- Pupils use number facts and their understanding of place value and partitioning to solve addition and subtraction calculations
- Pupils are beginning to develop a range of strategies such as balancing ($17+24$ becomes $20+21$) and same difference ($44-18$ becomes $42-20$) and other strategies such as those detailed below.
Teachers and / or pupils may demonstrate these strategies on an empty number line (ENL) supported by a variety of materials.

Addition

Reordering Children should understand why it is more efficient to reorder numbers when adding to put the largest number first.
Bridging They should then use knowledge of number bonds with bridging.
$48+7=48+2+5$

$$
=50+5=55
$$

Partition both numbers then add and recombine.
$145+123=100+100+40+20+5+3$

$$
=200+60+8
$$

$$
=268
$$

Partition just one number
$234+122=234+100+20+2$
$=334+20+2=$

$$
=354+2=356
$$

Doubles and near doubles

$143+145=$ double $140+8=288$
Compensating ~ adding a close multiple of 10 (e.g. 18, 19, 21, 22)
$156+18$ becomes $156+20-2=154$

Subtraction

Bridging through ten and multiples of ten should also be use when subtracting.

73-16 becomes 73-10-3-3

$$
\begin{aligned}
& =63-3-3 \\
& =57
\end{aligned}
$$

Counting on in tens and ones to find the difference.
Count on because the minuend and subtrahend are
close together $\sim 23-17=6 \quad 17+3=20 \quad 20+3=$ 23

Count back if minuend and subtrahend are further apart $\sim 45-22=45-20=25-2=23$

Compensating ~ subtracting a close multiple of 10
(e.g. 18, 19, 21, 22)
$72-19=72-20+1=52+1=53$

Year 3

When teaching the stages in progression, start with models and make connections with the expanded and formal methods at the same time. For example using counters and/or Dienes alongside the expanded and formal methods. Children should be able to explain what is happening when they carry.
Place emphasis on the ability to explain and reason about the mathematics behind the method. E.g. Ask 'What's the same and what's different?'

Children should continue to use horizontal number line - encourage use of visualisation of lines and grids. Children should also be encouraged to look at the difference between two numbers before making a decision about how to use the number line e.g. small or large difference - count on or count back. Children should be taught subtraction alongside addition. Decomposition should only be introduced when children are secure with informal jottings and number lines.

Multiplication and Division

- Recall and use multiplication and division facts for 3,4 and 8 multiplication tables.
- Confidently x and \div by 10 and 100
- Solve missing number problems using the relationship between x and \div
- Solve positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Write and mentally calculate mathematical statements for multiplication and division up to TUxU and $\mathrm{TU} \div \mathrm{U}$ using mental methods:

Through doubling, they connect the 2,4 and 8 multiplication tables. $4 \times 6=24$ so $8 \times 6=48$ and can derive facts such as 6×9 using 3×9

Factorising: 18×3 becomes 6×9

Using Place Value and facts solve $84 \div 7$ using $70+14$ knowing that $70=10 \times 7$ and $14=2 \times 7$

Use known facts $3 \times 2=6$ to derive $30 \times 2=60,60 \div 3=20$ and $20=60 \div 3$

Using commutative and associative laws

$$
4 \times 12 \times 5=4 \times 5 \times 12=\quad 20 \times 12=240
$$

They know $7 \times 8=8 \times 7$ and can explain using an array.

00000000	0000000	
00000000	0000000	
00000000	0000000	
00000000	0000000	
00000000	0000000	
00000000	0000000	
00000000	0000000	

They calculate 12×7 using 10×7 and explain using an array.

\bigcirc	
-00000000	
-00000000	
○○○○○○○○○	
000000000	
000000000	\bigcirc
$00 \bigcirc 0 \bigcirc 00$	\bigcirc

Multiplication \quad Tux u (susgest no formal method is taught in year 3)

When teaching the stages in progression, start with models and make connections with the expanded. Use counters and/or Dienes alongside the expanded as an explanation for the expanded method. Place emphasis on the ability to explain and reason about the mathematics behind the method. E.g. Ask 'What's the same and what's different about these three approaches to the same calculation? Children should become fluent in using the formal method.

Continue to use a range of manipulatives, encouraging children to demonstrate to you how they are using them to calculate.

Grid method
$35 \times 7=245$

x	30	5
7	210	35

$210+35=245$
$35 \times 7=245$
$30 \times 7=210$
$5 \times 7=35$

In Year 3 focus on mental methods of division demonstrated using the number line and a variety of models before moving onto the beginings of short division which will be taught in Year 4.
When teaching the stages in progression, start with models and make connections with the expanded and formal methods at the same time. Use counters and/or Dienes alongside the expanded as an explanation for the formal method. Place emphasis on the ability to explain and reason about the mathematics behind the method. E.g. Ask 'What's the same and what's different about these three approaches to the same calculation? Children should become fluent in using the formal method.

